Dual role of phosphofructokinase-2/fructose bisphosphatase-2 in regulating the compartmentation and expression of glucokinase in hepatocytes.
نویسندگان
چکیده
Hepatic glucokinase is regulated by a 68-kDa regulatory protein (GKRP) that is both an inhibitor and nuclear receptor for glucokinase. We tested the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2) in regulating glucokinase compartmentation in hepatocytes. PFK2 catalyzes formation or degradation of the regulator of glycolysis fructose 2,6-bisphosphate (fructose 2,6-P2), depending on its phosphorylation state (ser-32), and is also a glucokinase-binding protein. Incubation of hepatocytes at 25 mmol/l glucose causes translocation of glucokinase from the nucleus to the cytoplasm and an increase in fructose 2,6-P2. Glucagon caused phosphorylation of PFK2-ser-32, lowered the fructose 2,6-P2 concentration, and inhibited glucose-induced translocation of glucokinase. These effects of glucagon were reversed by expression of a kinase-active PFK2 mutant (S32A/H258A) that overrides the suppression of fructose 2,6-P2 but not by overexpression of wild-type PFK2. Overexpression of PFK2 potentiated glucokinase expression in hepatocytes transduced with an adenoviral vector-encoding glucokinase by a mechanism that does not involve stabilization of glucokinase protein from degradation. It is concluded that PFK2 has a dual role in regulating glucokinase in hepatocytes: it potentiates glucokinase protein expression by posttranscriptional mechanisms and favors its cytoplasmic compartmentation. Thus, it acts in a complementary mechanism to GKRP, which also regulates glucokinase protein expression and compartmentation.
منابع مشابه
Contributions of glucokinase and phosphofructokinase-2/fructose bisphosphatase-2 to the elevated glycolysis in hepatocytes from Zucker fa/fa rats.
The insulin-resistant Zucker fa/fa rat has elevated hepatic glycolysis and activities of glucokinase and phosphofructokinase-2/fructose bisphosphatase-2 (PFK2). The latter catalyzes the formation and degradation of fructose-2,6-bisphosphate (fructose-2,6-P(2)) and is a glucokinase-binding protein. The contributions of glucokinase and PFK2 to the elevated glycolysis in fa/fa hepatocytes were det...
متن کاملThe contributions of glucokinase and phosphofructokinase-2/fructose bisphosphatase-2 to the elevated glycolysis in hepatocytes from Zucker fa/fa rats
Abbreviations Ad, adenoviral vector; GKRP, glucokinase regulatory protein; fructose 2,6-P2, fructose-2,6-bisphosphate; glucose 6-P, glucose 6-phosphate; N/C, nuclear / cytoplasmic ratio; PFK2, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase; PFK2-M, PFK2-S32A/H258A; PFK2-W, wild-type PFK2. Page 1 of 31 Articles in PresS. Am J Physiol Regul Integr Comp Physiol (June 6, 2007). doi:10.1152/aj...
متن کاملGlucagon induces translocation of glucokinase from the cytoplasm to the nucleus of hepatocytes by transfer between 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase-2 and the glucokinase regulatory protein
Glucokinase activity is a major determinant of hepatic glucose metabolism and blood glucose homeostasis. Liver glucokinase activity is regulated acutely by adaptive translocation between the nucleus and the cytoplasm through binding and dissociation from its regulatory protein (GKRP) in the nucleus. Whilst the effect of glucose on this mechanism is well established, the role of hormones in regu...
متن کاملInhibition of glucokinase translocation by AMP-activated protein kinase is associated with phosphorylation of both GKRP and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.
The rate of glucose phosphorylation in hepatocytes is determined by the subcellular location of glucokinase and by its association with its regulatory protein (GKRP) in the nucleus. Elevated glucose concentrations and precursors of fructose 1-phosphate (e.g., sorbitol) cause dissociation of glucokinase from GKRP and translocation to the cytoplasm. In this study, we investigated the counter-regu...
متن کاملGlucokinase regulatory protein is associated with mitochondria in hepatocytes.
The association of glucokinase with liver mitochondria has been reported [Danial et al. (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424, 952-956]. We confirmed association of glucokinase immunoreactivity with rat liver mitochondria using Percoll gradient centrifugation and demonstrated its association with the 68 kDa regulatory p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 54 7 شماره
صفحات -
تاریخ انتشار 2005